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Abstract 

A new algorithm, called the Minimal Residual 
4R algorithm, is presented to solve subset regres- 
sion problems. It is shown that this new scheme 
can be used as a numerically reliable implementa- ' 

tion of the stepwise regression technique, which 
1s widely used to ldentify an aerodynamic model 
from flight test data. 
the numerical superiority of this scheme over the 
stepwise regression technique is demonstrated in 
an experimental simulation study. 

This capability as well as 

1. Introduction 

This paper describes a study of the so-called 
subset regression problem (SRP). This problem 
occurs in the identification of a mathematical 
model representing the aerodynamic forces and 
moments which act on an aircraft as a function of 
1 1  aircrart state quantities, such as angie or̂  
attack and Mach number and 2) aircraft input quan- 
tities, such as control surface deflections. This 
mathematical model is referred to as the air- 
craft's aerodynamic model. In Refs. 1-3, precise 
conditions have been stated which allow formula- 
tion of this identification problem as an SRP. 

.\ 

In this paper, we focus on the numerical 
techniques used to solve SRP. Generally, tech- 
niques for solving SRP are divided into tu0 dif- 
ferent classes: 

1) A first class is formulated in a complete 
statistical framework. The techniques in this 
Class are generally referred to as subset regres- 
sion methods and are widely sed by practicing 
engineers and econometrists. # 

2) A second class has its basis mainly in 
numerical analysis. Currently the most widely 
used technique from this class is the Singular 
Value Decomposition (SVD) m e t h ~ d . ~  

The SVD has clearly demonstrated its numerl- 
Cal su eriority over the techniques from the first 
class.' However, it does not do the subset selec- 
tion from the originally defined model parameters., 
This is a major drawback for the aerodynamic d e l  
identification problem, since the original model 
parameters have a physical interpretation. 

In order to overcome this drawback, a new 
algorithm has been developed. Thls new technlque 
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therefore is iii the piilBlic domain. 

is called the Hlnimal Residual QR (HROR) algo- 
rithm. 
numerical analysis point of view and therefore 
belongs in the second class mentioned above, it 
will be shown that it combines the advantages of 
techniques from both classes. On the one hand, it 
retains the precision of the original data such as 
the SVD and on the other hand can be used In a 
complete similar way as the stepwise regression 
technique (SRT), since it produces quantities such 
as sequential F-tests, etc. 

Although the MRQR scheme is derived from a 

The outline of the paper I s  as follows. In 
Section 2, the new scheme w i l l  be described. Its 
relationship with the existing SRT is indicated In 
Section 3, and Section 4 presents the result of a 
comparison study between the HROR and t h e  SRT. 
Finally, Section 5 presents the conclusions OF 
this research. 

2. Tne iiinimai Resiauai OR Aigoritnm 

This new scheme is originally proposed in 
Ref. 7. In this section, we review this scheme to 
reveal the relationship with the SRT. 

The HRQR algorithm performs a QR factoriza- 
tion with column pivoting of the system matrix 
A in the considered SRP. If this SRP is denoted 
as : 

nintAx - b12 ( 1 )  
X 

with 1-12 representing the Euclidean norm, and 

and 

rank(A) = k s n 

then we can write the result of HROR as 

(2) T T  T minlQ A n ( n  x) - Q b12 
X 

where 9 
i.e., Q Q = I and 1 is the column permutation 
matrix. The operation Lndicated by Eq. (2) 
results in 

is an orthogonal transformation matrix, 

( 3 )  

where R1, 1s kxk and upper triangular, R 1 2  
is kx(n-k) and b, E Rk. From the decompositlon 
of Eq. ( 3 ) .  the solution to Eq. ( 1 1 ,  which now is 
no longer a minimal norm solution, becomes 
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1 x = R - b  1 1 1  1 

and the 2-norm of the residual is given by 

The crucial part in this computational scheme 

I c 1 2 .  

[Eqs. (2-411 is the generation of the column per- 
mutation matrix n. The way this is done in the 
HRQR scheme is now illustrated for the simple tuo- 
dimensional case. 

2.1 The Two-Dimensional Case 

In this case, the data of problem (1). i.e., 
the two-column vectors of A and the right hand 
side (rhs) b, are graphically represented tn 
fig. 1. 

Just as with the SRT, the MRQR algorithm 
selects one column vector of A at a time. The 
measure initially proposed in Ref. 7 for this 
selection is "the distance of the rhs to the 
column vectors of A." 

In Fig. 1, these distances are denoted by 
mg, where the superscript indicates that we are 
selecting the first column and the subscript indi- 
cates the corresponding column position in the 
A-matrix. The column that will be selected by the 
HRQR algorithm is the one "closest" to the rhs. 
This correspo ds to finding the minimum of the 
sequence (Im I ) ,  which for th case of fig, 1 
results in the selection of al. This column is 
then permuted to the first column position of 
A .  In the next step, the same selection procedure 
is repeated for the components of the remainlng 
columns of A and he component of the rhs that 
is orthogonal to a,.  ese components are rcp- 
resented in Fig. 1 by a and b2, respectively. 
v e  selection in the ortfogon 1 complement of 
a l  is obvious now, since Rm21 = 0. 

"residuals" because is the residual of 
the least squares problem 

1 

7 
L t 

?! 
f 

1 
be referred to as 

i 1 minlaLC - b I2 
E 

(Ref. 7). Th selection of the minimum of that 
sequence ( I m L l )  gave rise to the algorithmic 
name, Minimal Residual QR algorithm. 

f 

2.2 Generalization of the Two-Dimensional Case 

The generalization of the two-dimensional 
case, given in pseudo-programming-language form, 
is sunmarlzed in the following algorithm. 

Algorithm 1: 

Def ine: 

1 an] and b1 = b = [a, ... al ... 1 1 1 A = A 
(5) 

rank = n 

1 )  Select column vector of A i  closest to 
bi 
( R m g l ) .  This column is called a'. 

vector of A i  by the column permutation matrix 

based on the computed sequence of residuals 'i 
1 

2) Interchange the Jth and ith column 

" 1 -  

such that 
3) Perform an OrthoROnal projection Qi, 

and 

where ,1 is an ixi upper-triangular matrix 

and R 1 2  (i)x(J) is an ixJ rectangular matrix. 

* I )  Rank determination test. 

END 

The rank determination in the fourth step of 
the ~!n-loop, i.e., rejecting one of the columns 
of A, can be done in various ways. In this 
paper, this determination will be based on the 
so-called partial f-test quantities, such as 
those used in SRT.4 
section 3. 

This is outlined in 

2.3 Implementation Note on the HRQR Algorithm 

Ari efficient way to calculate the residuals 
and to perform the orthogonal transforma- 1 

I m t l  
tions Qi in Eq. (6) is described in Ref. 7. 
Here we initially transform problem (1) to: 

where R is an nxn upper-triangular matrix 
and b1 E Rn+'. 

This compression of the data can be done 
sequentially, such as with the construction of the 
"normal" equations (see section 3). 
tial ability also makes this scheme attractive 
from the data storage polnt of view. 

This sequen- 

DO i = l:n, 
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Next, Algorithm 1 is applied to the right- 
hand side of Eq. (7). A combination of these 
intermediate steps would then result in the fol-  
lowing reformulation of problem (1). 

T T T  T minl[Qk ... Q l 1 Q h A t ~ ,  ... H , ~ ( [ I I ,  ... n k l  x )  
n 

T T T  - [Ok ... Q 10 bl (8) l h 2  
T uhere [Qk ... QT] will be denoted as Q 

[ H ,  ...- I 1 as H. k 

Note: The robustness properties of the HRQR 
algorithm rely on the use of orthogonal transfor- 
mations, denoted in Eq. (8) by 
respectively. These do not modify the error pat- 
tern present on the original data. 

and g 

a, Qg, and H, 
6 

3. Relationship of the HRQR AlRorithm with 
Stepwise Regression 

The classical stepwise regression technique 
(SRT) solves problem (1) via the so-called norm1 
equa t ions. 

T T [ A  Alx = A b (9) 

From this set of equations the partial F-test 
quantities, the partial correlation coefficients, 
and other quantities are computed.'p8 These 
latter quantities form the crucial information 
source in adding (or subtracting) a new variable 
xi in the regression model. The partial F-test 
quantities are defined next. 

Definition 1. When in the construction of 
the regression model, we add parameter xt  to the 
model already contalning 1-1 parameters, the 
F-test value for that parameter xt is: 

.II .r, 
1 I 

(10) ci-lci-l - =ic1 (m - i) 
T .  

Fxt - C i c l  

where e t  are the residuals of regression 
models containing i-1 and 1 parameters, 
respectively. 

The quantity defined in Eq. (10) can also be 
derived from the HRQR algorithm. In order to 
clarify this, let us focus at the ith stage of 
the do-loop of algorithm 1. The partial F-test 
value for each parameter xI not yet In the nodel 
becomes : 

The difference of the two norms in Eq. ( 1 1 )  
does not have to be computed explicitly; it 
betomes available during the computation ofi 
Imt12.  I f  we denote this difference by IdtlZ, 
then Eq. ( 1 1  1 becomes 

(12 )  

The F-test quantities now allow US to make a 
decision about the statlstical significance of 
adding parameter xE to the model. Statistical 
significance corresponds to the F-test values 
being above a threshold Fa, which is taken from 
statistical tables about the F-distribution 
(e.g., Ref. 4). From Eq. (12), we clearly see 
that we can impose this test directly on tbe ele- 
ments of the derived residual sequence (Ilm:i12) i n  
the HRQR algorithm. Based on the desired thresh- 
old FO, such a test would become 

I5 "'t'2 - 

This lnequality precisely reveals the rela- 
tionship between the HRQR and SRT. it indicates 
that the same parameter x t  w uld be added to the 
model whether based on the (lm I ) sequence or the 
[Fx ) sequence. 

algorithm as a robust imDlementation of the clas- 
sical stepwise regression scheme. Furthermore, as 
demonstrated in Ref. 7, the MRQR algorithm gives 
rise to additional parameters, such as smallest 
singular values, that may be helpful in construct- 
ing the regression model. In this paper, such an 
additional feature is presented in section 4.2. 

P 
t 2  

t 

This section summarizes the use of the MRQR 

4. Experimental Evaluation 

4.1 
and SRT 

Demonstration of the Equivalence between MRQR 

. In this first example, the data taken from 
Ref. 9 (p. 647) and analyzed in Ref. 4 via the 
classical SRT are analyzed by the proposed MRQR 
algorithm. These data, summarized in Table 1, 
comprise four candidate solutions (i.e., the 
columns of the A matrix), and a right-hand side 
(the b-vector), from which 13 samples have been 
recorded. Hence, m = 13 and n = 4. In this 
section the Candidate solutions will be referred 
to by their corresponding component of the 
x-vector, deflned Ln Eq. ( I ) ,  The results of the 
HRQR algorithm are summarlzed in Table 2. Compar- 
ison of the partial F-test values derived from 
HRQR, denoted by Fl, with those derived from SRT, 
denoted by 
lence of both schemes. FiiCthermore, we also 
observe that using the ( I m t I Z )  sequence results in 
the same model as using the partial 
values. 

Fa, clearly demonstrates the equiva- 

1 - 
F-test 

4.2 An Additional Feature of the HRQR 

In analyzing real data, visual inspection of 
time-history plots of the available data is often 

3 



used .  
t h e  r h s  might  allow (Or in f luer ice)  t h e  d e c i s l o n  of 
which p a r a m e t e r  to i n c l u d e  i n  t h e  r e g r e s s i o n  model 
or might  h e l p  t o  Judge  t h e  v a l i d i t y  of t h e  
e x t r a c t e d  model. I f  t h e  same g r a p h i c a l  i n f o r -  
m a t i o n  for a l l  s u b s e q u e n t  d e c i s i o n  s t a g e s  1 s  
d e s i r e d ,  it is g e n e r a l l y  n e c e s s a r y  to store t h e  
o r i g i n a l  
r e s i d u a l s  of t h e  co lumns  n o t  y e t  i n  t h e  model. 

Such p l o t s  of t h e  c a n d i d a t e  s o l u t i o n s  and 

A-matrix and  e x p l i c i t l y  compute t h e  

I n -  t h e  i t h  d e c i s i o n  s t a g e ,  t h e  m a t r i x  A 
is p a r t i t i o n e d  as 

where  Ai-1 d e s i g n a t e s  t h e  a l r e a d y - s e l e c t e d  
columns,  t h e n ' t h e  r p i d u a l s  of t e columns i n  
An-'+ ' become [ A i-'ix 1- 1 - An-'+']. These r e s i d -  
uals c a n  also b e  computed from t h e  d a t a  a v a i l a b l e  
from t h e  HRQR a l g o r i t h m  wi thout  e x p l i c i t l y  s t o r i n g  
t h e  A-matrix. Us ing  Eqs. (6-8) t h e y  become 

Here o n l y  [Q1 ... 
w h e r e a s  t h e  i n f o r m a t i o n  t o  c o n s t r u c t  c a n  b e  
s t o r e d  i n  t h e  lower t r i a n g u l a r  p a r t  of [ R I O ] T  i n  
Eq. ( 7 ) . "  I n  t h i s  way, u s e  of Eq. ( 1 5 )  becomes a 
v e r y  r e l l a b l e  and s t o r a g e - e f f i c i e n t  way to e v a l u -  
a te  r e s i d u a l s  i n  t h e  r e g r e s s i o n  a n a l y s i s .  

is s t o r e d  e x p l i c i t l y ,  

This f e a t u r e  is demonst ra ted  u s i n g  t h e  fo l -  
lowing  example t a k e n  from Ref. 11 ( p .  ID-4.7). 
Here t h e  o r i g i n a l  p l a n t  was g e n e r a t e d  by t h e  fol- 
lowing  s ta t ic  model. 

y ( t )  = 1.2 s i n ( t )  + 2 s i n ( . 7 t )  + 3 c o s ( t )  

- O . l [ s i n ( Z t )  + 6 1  - 2 s i n ( . 9 9 t )  + e ( 1 6 )  

where 6 and e are zero-mean w h i t e  n o i s e  
s e q u e n c e s  w i t h  s t a n d a r d  d e v i a t i o n s  of 0.001 and 
0 . 1 ,  r e s p e c t i v e l y .  

I n  t h e  r e g r e s s i o n  a n a l y s i s ,  t h e  f o l l o w i n g  
model was p o s t u l a t e d .  

b ( t )  = x l  s i n ( t )  + x2 s i n ( . 7 t )  + x3 c o s ( t )  

+ x4 c o s ( 3 t )  ( 1 7 )  

The f o u r  c a n d i d a t e  s o l u t i o n s  ( s i n (  t ) ,  
s i n (  . 7 t ) ,  c o s ( t ) ,  c o s ( 3 t ) l  and  y (  t )  of Eq. (16)  
are shown i n  Flg .  2. C l e a r l y ,  from t h i s  f i g u r e  
c a n d i d a t e  s o l u t i o n  x3 a p p e a r s  most c l o s e l y  
r e l a t e d  t o  t h e  r h s ,  as was also d e m o n s t r a t e d  by 
t h e  F - t e s t  v a l u e s  or t h e  ( Imt12)  r e s i d u a l s .  
After t h i s  s e l e c t i o n ,  t h e  remain ing  p a r t s  of t h e  
o t h e r  c a n d i d a t e  s o l u t i o n s  as  well as t h e  r e m a l n l n g  
p a r t  of t h e  r h s  are shown i n  F l g .  3. 

1 

Next t h e  c a n d i d a t e  s o l u t i o n  x2 was 
s e l e c t e d .  
t h e  r e m a i n i n g  columns a n d  t h e  r h s .  
f i g u r e  t h e  "high" c o r r e l a t i o n  w i t h  x ,  becomes 
clear. The r e s i d u a l s  of t h e  r e m a i n i n g  s i g n a l s ,  
i .e . ,  r h s  and  x4 ,  are d i s p l a y e d  i n  F i g .  4 .  

Again, F i g .  4 d l s p l a y s  t h e  r e s i d i r a l s  of  
From t h i s  

From t h i s  a n a l y s i s ,  we c l e a r l y  o b s e r v e  t h a t  
t h e  r e s i d u a l s  of each of t h e  c a n d i d a t e  s o l u t i o n s  
after each s e l e c t i o n  are n e a r l y  t h e  same as t h e  
c a n d i d a t e  s o l u t i o n s  before t h e  s e l e c t i o n s .  T h i s  
is a clear i n d i c a t i o n  of " o r t h o g o n a l i t y "  of t h e  
c a n d i d a t e  s o l u t i o n s ,  which is also a t t r i b u t e d  t o  
t h e  v a l u e  of t h e  c o n d i t i o n  number o f  t h e  matrix 
c o n t a i n i n g  t h e  o r i g i n a l  f o u r  c a n d i d a t e  s o l u t i o n s .  
The lat ter is '2, which c l e a r l y  is close t o  1. 

T h i s  example d e m o n s t r a t e s  o n e  f e a t u r e  of t h i s  
" r e s i d u a l "  a n a l y s i s ,  b u t  p r a c t i c a l  e x p e r i e n c e  
m i g h t  p r o v i d e  a d d i t i o n a l  u s e s .  

4 . 3  Numer ica l  S u p e r i o r i t y  of t h e  MRQR 

I n  t h e  p r e v i o u s  two examples ,  t h e  c o n d i t i o n  
number o f  t h e  o r i g i n a l  A-matr ix ,  as d e f i n e d  i n  
Eq. ( 1 1 ,  was v e r y  close to  1 .  For t h e s e  cases, 
t h e  F - t e s t s  computed from t h e  HROR a l g o r i t h m  o r  
the  SRT are c o m p l e t e l y  i d e n t t c a l .  For cases where 
t h e  c o n d i t i o n  number is l a r g e r ,  t h i s  n u m e r i c a l  
e q u i v a l e n c e  may be l o s t ,  a s  is d e m o n s t r a t e d  by t h e  
f o l l o w i n g  l e a s t - s q u a r e s  problem: 

where L is a v e r y  small number. The normal  
e q u a t i o n s  are 

c 

When E is t a k e n ,  f o r  example ,  e q u a l  to 
w i t h  a machine p r e c i s t o n  of 
ATA 
d e s t r o y s  t h e  a c c u r a c y  of t h e  F - t e s t  v a l u e s .  With 
t h e  u s e  of t h e  HR R a l g o r i t h m  and t h e  same machine 
p r e c i s i o n  of lo-'', t h i s  d o e s  n o t  o c c u r .  

t h e  m a t r i x  
i n  Eq. ( 1 9 )  becomes s i n g u l a r  and clearly 

5 .  ' C o n c l u s i o n  

A new t e c h n i q u e  to  solve s u b s e t  r e g r e s s i o n  
problems h a s  been p r e s e n t e d .  The techr i lque  is 
c a l l e d  t h e  minimal  r e s i d u a l  QR a l g o r i t h m  ( H R Q R ) .  
E a s t c a l l y ,  i t  p e r f o r m s  a QR f a c t o r l z a t l o n  w l t h  
cotumn p i v o t i n g .  I t  h a s  been shown a n a l y t i c a l l y  



that the MRQR algorithm can be used as a numeri- 
cally stable implementatton of existing stepwise 
regression techniques. The numerical stability Is 
demonstrated in an experimental evaluation study. 

From this technique, a reliable solution of 
subset regression problems has been derived that 
allows the use of statistical parameters commonly 
used in classical solutlons, such as the stepwise 
regression technique. 
allou more "accurate" models to be constructed, 
especially uhen a high correlation extsts between 
candidate solutions in the model. 

This new technique should 
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Table 2 (Retyped) computer output of HRQR on t h e  
data  of Ref. 9 (p .  6 4 7 ) .  

SEL. # 

1 

2 

3 

4 

CAND. SOL. IlrnLEL.#ll Fl F¶ 
21 35.5764914 12.6025177 12.6025150 

=2 30.1054204 21.9606047 21.96606160 

2 3  44.3862470 4.403.1160 4.4034159 

2 4  29.7298993 22.7985202 22.7985270 

WIIICII SEL # [ENTER 0 TO QUIT SELECTION]: 3 

SEL. # 

1 

2 

DELETING A COLUMN FROM TlIE FIRST 1 SELECTED 

CAND. SOL. 11m:EL.#11 F1 F2 
2 2  6.9262346 5.0258650 5.0258974 

2 3  7.1299448 4.2358460 4.2358519 

SEL. # 
1 

B. SELECTING TIIE SECOND COLUMN FOR ENTRY 

CAND. SOL. FI F¶ 
2 4  22.7985202 22.7985210 

8.6465085 108.2239145 108.2238900 

29.4767726 .1724839 .I724847 

2 3  13.2566210 40.2945810 40.2945430 

L 

1 2 4  159.2952101 159.2952400 

2 21 108.2239145 108.2238900 

WHICII SEL # IENTER 0 TO QUIT SELECTION]: 1 

DELETING A COLUMN FROhI TIIE FIRST 2 SELECTED 

SEL. # I CAND. SOL. I FI I FY I 

C .  %I$L&GYING THE THIRD COLUMN FOR ENTRY 

WIIICII SEL # [ENTER 0 TO QUIT SELEC'HONI: I 

DELETING A COLUMN FROM TIIE FIRST 3 SELECTED 

WIIICII SEL # [ENTER 0 T O  SKIP]: 0 
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Fig. 1 The HROR algorithm for the two-dimensional 
case (n = 2, n = 2). 
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Fig. 2 Time-history plots of the candidate solu- 
tions and right-hand side before first selection 
In the HRQR. 
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Fig. 3 Time-hidtory plots of tho candidate solu- 
tions arid right-hand side after first selection ir 
the HROR. 
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Flg. 11 Time-history plot3 of the candidate solu- 
tions and right-hand side after second selection 
in  the HROR. 

CANDIDATE SOLUTION AND RIGHT HAND 
SIDE AFTER THIRD SELECTION 

RESIDUAL -- X4 - rhr 

I I I 1 1 I I I I 

1 1  2 3 4 5 6 7 8 9 10 
TIME 

Fig. 5 Time-hlstory plots of the candidate solu- 
tions arid right-hand side after third selection in 
the HRQR. 
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